CS 59000-009 Exam Fall 2018

The following questions ask you to analyze some code fragments and to write some
code fragments. When you analyze some code, your analysis should be written in complete
sentences organized into paragraphs. Do not write sentence fragments and do not write
the most terse answer that you can think of (even if it is essentially correct). You are being
graded on your ability to communicate, not just on your ability to arrive at correct solutions.

Write all your answers neatly using a computer document format. You can write your
answers in a plain text file, a MS Word document, an HTML page, or even in IXTEX. Put
your exam, and any supporting files that you might like to submit (like compilable code), in
a zip file and submit your zip file to me using Blackboard.

Each person should work on this exam by themself. If you have any questions about the
exam, feel free to send me an e-mail.

This exam should be turned in to Blackboard by Friday, December 14.

1. The following code outlines a synchronization pattern. Assume that the two threads
begin at the same time, each thread runs on its own CPU core, and there are no other

(significant) threads running on the cores.

void *threadl(void *vargp)
{ while(1)

{ << do Calculation A >>
sem_post (&semaphorel) ;
<< do Calculation B >>
sem_post (&semaphore?2) ;
sem_wait (&semaphore3) ;

void *thread2(void *vargp)
{ while(1)

{ sem_wait(&semaphorel);
<< do Calculation C >>
sem_post (&semaphore3) ;
sem_wait (&semaphore?2) ;

sem_t semaphorel, semaphore2, semaphore3;

int main()

{ pthread_t tid;
sem_init (&semaphorel, 0, 0); // not
sem_init (&semaphore2, 0, 0); // not
sem_init (&semaphore3, 0, 0); // not
pthread_create(&tid, NULL, threadl,
pthread_create(&tid, NULL, thread2,
while(1){ Sleep(1000); }

}

signaled
signaled
signaled
NULL) ;
NULL) ;

(a) (8 points) In what way are the two threads synchronized? Give your answer in
terms of how the three calculations, A, B, and C, are ordered in time. Explain
what parts are sequential and what parts are in parallel. Explain carefully what
role each of the three semaphores plays in the synchronization.

(b) (12 points) Rewrite this program using condition variables.

2. Suppose that we have five C functions that together solve some problem. Suppose these
functions, labeled A through E; depend on each other according to the following graph.

Each edge of the graph denotes a dependency between two of these functions. For

example, the edge from node B to node D means that functionB must be called, and
must return, before functionD can be called.

(a) (8 points) What is wrong with this sketch of a C program that uses Pthreads to
execute the five functions in parallel in a way that adheres to the above dependency
graph? How would you improve this program (but still use five worker threads and
only the Pthreads functions pthread create() and pthread join())?

void *threadA(void *vargp){ functionA(); }

void *threadB(void *vargp){ functionB(); }

void *threadC(void *vargp){ functionC(); %
void *threadD(void *vargp){ functionD(); }
void *threadE(void *vargp){ functionE(); }

int main()

{ pthread_t tidA, tidB, tidC, tidD, tidE;
pthread_create(&tidB, NULL, threadB, NULL);
pthread_create(&tidC, NULL, threadC, NULL);
pthread_join(tidB, NULL);
pthread_join(tidC, NULL);
pthread_create(&tidA, NULL, threadA, NULL);
pthread_create(&tidD, NULL, threadD, NULL);
pthread_join(tidA, NULL);
pthread_join(tidD, NULL);
pthread_create(&tidE, NULL, threadE, NULL);
pthread_join(tidE, NULL);

(b) (12 points) Write another sketch of a Pthreads program to execute the above five
functions in a way that is maximally parallel (i.e., always runs as many threads in
parallel as possible), adheres to the above dependency graph, and uses the minimal
number of threads possible (including the main() thread!). Your solution should
still use only pthread_join() for synchronization.

3. (12 points) Suppose that we have six C functions

void functionA(void); void functionD(void);
void functionB(void); void functionE(void);
void functionC(void); void functionF (void);

that together solve some problem. Suppose these function depend on each other accord-
ing to the following dependency graph.

Write a sketch of a C program that uses Pthreads to execute the above six functions in a
way that is maximally parallel, but adheres to the above dependency graph. Give a writ-
ten explanation of how your code solves the problem. You can use any synchronization
mechanism you want (join, condition variables, semaphores, etc.).

4. (15 points) This question is about I/O redirection and pipes on the Windows command-
line. Explain what each of the following possible command-lines mean. In each part,
you need to associate an appropriate meaning to the symbols a, b and ¢ (for example “b
names a program, a and ¢ name files” or “a and b name programs and c is a parameter
to b”). Also give an example of a runnable command-line with the given format (using
programs like dir, sort, more, etc.). You might find the following web pages useful.

http://ss64.com/nt/syntax-redirection.html
https://technet.microsoft.com/en-us/library/bb490954 . aspx

(a) zz:\>a>b<c

(b) zz\>a | b>c

(d) zz\>a<bé&c

(f) zz\> a &b | c

(g) zz2\>a& (b | ¢

5. (8 points) What problem is there with each of the following two command lines?

(a) zz\>a | b<c

(b) zz2\>a>b | ¢

6. (5 points) Draw a picture illustrating the processes, streams, pipes, and files in this
command-line.
z:\>a<b |l c2>d | e>f2>4d

7. (10 points) Draw a picture that illustrates all the processes, pipes, file descriptors, and
(possibly shared) streams after the following code has executed.

int main() {
int pipefd_1[2];
int pipefd_2[2];
pipe(pipefd_1);
pipe(pipefd_2);

int fork_rvl = fork();
if (fork_rvl > 0) {
int fork_rv2 = fork();
if (fork_rv2 > 0) {
close(4);
close(b);
dup(6) ;
close(6);
while(1)/* do work... */;
} else {
close(b);
close(6);
close(3);
close(1);
dup(4);
close(4);
while(1)/* do work... */;
}
} else {
close(3);
close(4);
close(6);
close(0);
dup(5);
close(5);
while(1)/* do work... */;
}

return O;

8. (10 points) Draw a picture that illustrates all the processes, pipes, file descriptors, and
(possibly shared) streams after the following code has executed.

int main() {
int pipefd_1[2];
int pipefd_2[2];
pipe(pipefd_1);
pipe(pipefd_2);

int fork_rvl = fork();
if (fork_rvl > 0) {
int fork_rv2 = fork();
if (fork_rv2 > 0) {
close(3);
close(4);
close(5);
close(6);
while(1)/* do work... */;
} else {
close(4);
close(6);
close(0);
dup(3);
close(3);
dup(5);
close(b);
while(1)/* do work... */;
}
} else {
close(3);
close(b);
close(1);
dup(4);
close(4);
dup(6) ;
close(6);
while(1)/* do work... */;
}

return O;

12-05-2018 at 04:37h

